SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE TITLE :

TECHNICAL MATHEMATICS

APPROVED

TECHNICAL MATHEMATICS

COURSE NAME

MTH654-4
COURSE NUMBER

TOTAL CREDIT HOURS: 64
PREREQUISITE(S): MTH626-4
I. PHILOSOPHY/GOALS:

1) Review the analytic geometry of the straight line and conic sections.
2) Study various methods of finding empirical equations from raw lab data.
3. Formatting and use of graphical aircraft performance charts as found in Cessna and Piper Aircraft operators' manuals.
4. Review derivatives of trig, log and exponential functions.
5. Methods of integration (continued from MTH626).

II. STUDENT PERFORMANCE OBJECTIVES:

Upon successful completion of this course the student will be able to:

1. Layout graphs and find the general equations of various straight lines, circles, parabolae, ellipses and hyperbolae.
2. Find the empirical equations for any set of raw lab data by various methodsf 2 pt method, method of averages for linear relationships, method of selected points on general polynomials.
3. Create and/or use multiline graphs to determine flight parameters of the Piper Twin Commanche.
4. Differentiate and integrate various trig, log exponential and other functions.
III. TOPICS TO BE COVERED:

TIME ALLOTTED

1. Analytic Geometry. 6
2. Empirical Equations. 11
3. Twin Commanche Performance Graphs. 6
4. Derivatives of Trig, Log Exp. Functions. (Review) 6
5. Methods of Integrating Trig, Log Exp. Functions, etc. 18

TECHNICAL MATHEMATICS

COURSE NAME

IV.

LEARNING ACTIVITIES: (cont'd
Topic
No. PERIODS DESCRIPTION
REVIEW OF DERIVATIVES OF Washington Text - Chapters 12,26
EXPONENTIAL AND
LOGARITHMIC FUNCTIONS - Problems from:
Exercise 12.1

- Exponential and log functions
- Derivatives of
logarithmic functions
-Derivatives of
exponential functions
-Application of above

18 METHODS OF INTEGRATION - Washington, Chapter 2
-Power Formula
-Basic logarithmic form
-Exponential form
-Various trigonometric forms

MTH654-4

COURSE NUMBER

Exercise 12.2
Exercise 12.3
Exercises 25-5 p,825
Exercises 26-6 p.829
Exercises 26-7 p.833
Review Exercises

Exercise $27-1$ p. 843
Exercise 27-2 846
Exercise 27-3 850
Exercise 27-4 853
Exercise 27-5 858
Exercise 27-6 p.862
Review Exercises

COURSE NAME

COURSE NUMBER

V. METHOD OF EVALUATION:

The student will be assessed by written tests, including up to five major periodic announced tests based on large blocks of subject matter, and several unannounced short quizzes on current work, the latter being given at the discretion of the instructor. Up to two assignments on empirical equations and/or aircraft graphs may be included in the course. A final test on the entire course may also be included, counting up to 30% of the final semester grade A letter grade will be determined based upon an average of the above.

GRADING:

$$
\begin{aligned}
& \mathrm{A}+=90-100 \% \\
& \mathrm{~A}=80-89 \% \\
& \mathrm{~B}=65-79 \% \\
& \mathrm{C}=55-64 \% \\
& 1 / \mathrm{X} \text { or } \mathrm{R}=\text { less than } 55 \% * *
\end{aligned}
$$

** See also the [ATI•i DEPT. EVALUATION GUIDELINES" publication for complete procedhures and ;policies.

VI. REQUIRED STUDENT RESOURCES:

Basic Technical Calculus with Analytic Geometry; A.J. Washington, 5th edition - Benjamin Cummings.

VII. ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY BOOK SECTION:

None available.

VIII. SPECIAL NOTES:

Students with special needs (e.g. physical limitations, visual impairments, hearing impairments, learning disabilities) are encouraged to discuss required accommodations confidentially with the instructor.

Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.

